Oncogenic targeting of an activated tyrosine kinase to the Golgi apparatus in a glioblastoma.
نویسندگان
چکیده
Activating oncogenic mutations of receptor tyrosine kinases (RTKs) have been reported in several types of cancers. In many cases, genomic rearrangements lead to the fusion of unrelated genes to the DNA coding for the kinase domain of RTKs. All RTK-derived fusion proteins reported so far display oligomerization sequences within the 5' fusion partners that are responsible for oncogenic activation. Here, we report a mechanism by which an altered RTK gains oncogenic potential in a glioblastoma cell line. A microdeletion on 6q21 results in the fusion of FIG, a gene coding for a Golgi apparatus-associated protein, to the kinase domain of the protooncogene c-ROS. The fused protein product FIG-ROS is a potent oncogene, and its transforming potential resides in its ability to interact with and become localized to the Golgi apparatus. Thus we have found a RTK fusion protein whose subcellular location leads to constitutive kinase activation and results in oncogenic transformation.
منابع مشابه
The Mitogen-activated protein kinase p38 links Shiga Toxin-dependent signaling and trafficking.
Shiga toxin (Stx) binds to the cell, and it is transported via endosomes and the Golgi apparatus to the endoplasmic reticulum and cytosol, where it exerts its toxic effect. We have recently shown that Stx activates the tyrosine kinase Syk, which in turn induces clathrin phosphorylation and up-regulates Stx uptake. Here, we show that toxin-induced signaling can also regulate another step in intr...
متن کاملRetrograde TrkAIII transport from ERGIC to ER: a re-localisation mechanism for oncogenic activity
In human SH-SY5Y neuroblastoma (NB) cells, nascent immature N-glycosylated 110kDa TrkA moves rapidly from the endoplasmic reticulum (ER) to the Golgi Network (GN), where it matures into the 140kDa receptor prior to being transported to the cell surface, creating GN and cell surface pools of inactive receptor maintained below the spontaneous activation threshold by a full compliment of inhibitor...
متن کاملTyrosine-phosphorylated Extracellular Signal–regulated Kinase Associates with the Golgi Complex during G2/M Phase of the Cell Cycle: Evidence for Regulation of Golgi Structure
Phosphorylation of the extracellular signal– regulated kinases (ERKs) on tyrosine and threonine residues within the TEY tripeptide motif induces ERK activation and targeting of substrates. Although it is recognized that phosphorylation of both residues is required for ERK activation, it is not known if a single phosphorylation of either residue regulates physiological functions. In light of rec...
متن کاملI-7: Maternal Signalling to the Placenta
Background: Though it is well established that maternal blood-borne signals influence highly the growth of the placenta, the mechanisms are not known. In vitro trophoblast culture models are limited by an inability to reconstruct the polarised bilayer of the human hemochorial placenta. We have used a first trimester villous tissue explant system to investigate how growth factors interact with p...
متن کاملA Leak Pathway for Luminal Protons in Endosomes Drives Oncogenic Signaling in Glioblastoma
Epidermal growth factor receptor (EGFR) signaling is a potent driver of glioblastoma, a malignant and lethal form of brain cancer. Disappointingly, inhibitors targeting receptor tyrosine kinase activity are not clinically effective, and EGFR persists on the plasma membrane to maintain tumor growth and invasiveness. Here we show that endolysosomal pH is critical for receptor sorting and turnover...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 100 3 شماره
صفحات -
تاریخ انتشار 2003